Investigative Psychology

Module description
Investigative psychology is the systematic science that developed out of early 'offender profiling' contributions by psychologists and the Federal Bureau of Investigation to police investigations and court cases.

The discipline draws on psychological principles, theories and research and applies this knowledge to the investigation of offending behaviour.

Students will analyse a range of behaviours from crimes as diverse as tax evasion, violence, burglary and terrorism.

The module aims to develop a critical thinking about the approaches to evaluating crime and behaviour as well as thinking beyond crime towards treatment, rehabilitation and reintegration.

This module aims to:
- Develop students' ability to examine the styles and patterns of criminal action
- Understanding of how psychological and social factors relate to the styles and patterns of criminal behaviour
- Critical analysis of the legal process including the tools of assessment and testimony

Learning outcomes
On completion of this module, students will be able to:
- Diagnose the links between the psychological and social factors of crime
- Demonstrate knowledge of the practical applications of investigative psychology
- Demonstrate systematic thinking towards a problem of investigative psychology
- Design and write appropriate research and briefing documents in the field of investigative psychology

Syllabus
- The investigative cycle
- Policing and psychology
- The questions investigative psychologists ask
- Science and due process
- Eyewitness testimony and assessment
- Beyond crime
- Offender profiling and Geographical profiling

Learning and teaching methods
The pedagogical approach for this module is informed through the principles of collaborative enquiry, constructionism and scientific apprenticeship.

Collaborative enquiry is supported through our internet-mediated learning platform that aims to develop a learning community and support dialogue and collaboration between students. This is encouraged through online peer discussion and debate to construct a unique learning experience that enhances students' subject understanding through social interactions and empowers them to explain their understandings, and receive feedback from tutors and peers.

Learning through scientific apprenticeship will take place through the scientist-practitioner model whereby students will be required to apply the principles of science to solving a problem in a scientific context.

Teaching will be delivered through the provision of specified reading materials that will be provided on the University of Essex Online learning platform, and will be supported by specified discussion forums, pre-recorded lecturecasts and biweekly online question and answer sessions (using synchronous communication software and application sharing facility).

Students will be provided with indicative guidance on, and encouraged to look at relevant websites which are appropriate to the learning outcomes, and to identify and share appropriate web-based resources (as learning support references) with their fellow students.

The pre-recorded lecturecasts and the online question and answer sessions will include referenced use of selected case studies which will be drawn from the reading materials and the practice-based and professional/educational contexts and experience of the tutors.

Self-managed learning will supplement lectures and students will be given direction on required and indicative reading.

<table>
<thead>
<tr>
<th>Description of unit of assessment</th>
<th>Length/Duration</th>
<th>Submission date</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research proposal</td>
<td>1,500 words</td>
<td>Mid module</td>
<td>30%</td>
</tr>
<tr>
<td>Case study</td>
<td>2,000 words</td>
<td>End of module</td>
<td>70%</td>
</tr>
</tbody>
</table>